raciocínio abstrato - ορισμός. Τι είναι το raciocínio abstrato
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι raciocínio abstrato - ορισμός

ARTIGO DE LISTA DA WIKIMÉDIA
Raciocínio; Raciocinio; Ser sensciente; Seres senscientes

Raciocínio lógico-matemático         
Raciocínio matemático
O raciocínio lógico-matemático é uma das operações de pensamento descritas por Jean Piaget. Trata do estabelecimento de relação lógica entre os entes.
Sistema de redução abstrato         
Sistema de Redução Abstrato
Um sistema de redução abstrato (SRA) é uma modelagem matemática que permite o estudo de propriedades sobre sistema de reescrita de termos sem a necessidade de nos preocuparmos com a natureza dos objetos que são reescritos.
Dedutivo         
Raciocínio dedutivo; Dedução; Dedutivismo; Raciocinio dedutivo; Dedutivo
adj.
Que procede por dedução.
(Lat. deductivus)

Βικιπαίδεια

Raciocínio lógico

Em lógica, pode-se distinguir três tipos de raciocínio lógico: dedução, indução e abdução. Dada uma premissa, uma conclusão, e uma regra segundo a qual a premissa implica a conclusão, eles podem ser explicados da seguinte forma:

  • Dedução corresponde a determinar a conclusão. Utiliza-se a regra e a sua premissa para chegar a uma conclusão, por exemplo: "Quando chove, a relva fica molhada. Hoje choveu, portanto a relva está molhada." É comum associar-se os matemáticos a este tipo de raciocínio.
  • Indução é determinar a regra. É aprender a regra a partir de diversos exemplos de como a conclusão segue da premissa. Exemplo: "A relva ficou molhada em todas as vezes que choveu. Então, se chover amanhã, a relva ficará molhada." É comum associar os cientistas a este estilo de raciocínio.
  • Abdução significa determinar a premissa. Usa-se a conclusão e a regra para defender que a premissa poderia explicar a conclusão. Exemplo: "Quando chove, a relva fica molhada. A relva está molhada, então deve ter chovido." Associa-se este tipo de raciocínio aos médicos e detetives etc.